
| JavaOne 2003 | BOF#1744

Distributed Music-
Jam with Java™
Sound and Project
JXTA

Florian Bomers
Java Sound Technical Lead
Sun Microsystems, Inc.

| JavaOne 2003 | BOF #17442

Primary Purpose of this BOF

Get to know the jam application.
Learn some tricks for programming Java
Sound (and Project JXTA)

B
E
G
I
N
N
I
N
G

| JavaOne 2003 | BOF #17443

Speaker

B
E
G
I
N
N
I
N
G

• Florian Bomers leads development of Java
Sound at Sun Microsystems

• Responsible for MIDI API and implementation of
the MMAPI (J2ME)

• Profound Java experience for 8 years

• Key contributor to jsresources.org and Tritonus

| JavaOne 2003 | BOF #17444

Key Topic Areas

• Demo: Jam

• Java Sound issues

• ogg/vorbis issues

• Project JXTA programming *)

Unfortunately no material for that
B
E
G
I
N
N
I
N
G

Demo

| JavaOne 2003 | BOF #17446

AudioFormat 1

• Jam needs concurrent playback and recording

• Some computers only allow to record in specific
audio formats, possibly different from playback
format

• Solution: all audio streams are converted to one
common playback format upon
loading/recording

• Needs Tritonus' SamplerateConverter and
PCM2PCM converter for flexible conversion

M
I
D
D
L
E

| JavaOne 2003 | BOF #17447

AudioFormat 2

• Semi-smart algorithm:

1)If non PCM, convert to PCM,16-bit
For ulaw, alaw, mp3, and ogg/vorbis

2)If bit size/signedness does not match playback
format, convert sample size and signed-ness
with PCM2PCMConverter

3)If sample rate doesn't equal playback
samplerate, convert sample rate by using
SamplerateConverter

M
I
D
D
L
E

| JavaOne 2003 | BOF #17448

Metronome

• MIDI would provide an easy method to output
the metronome sound

• Difficult to synchronize MIDI with audio

• Solution: Metronome is handled as an internal
track

• The metronome audio data is created in real
time from a “tock” wav file

M
I
D
D
L
E

| JavaOne 2003 | BOF #17449

Mixing 1

• Java Sound provides a software mixer.

• Could use one line per track and let Java
Sound mix

• Problems:
─ Synchronization of different lines not

implemented in Java Sound
─ Some Java Sound implementations may not

provide software mixing

M
I
D
D
L
E

| JavaOne 2003 | BOF #174410

Mixing 2

• Solution: implement own mixer

• Use FloatSampleBuffer to hold single tracks

• FloatSampleBuffer a utility class from Tritonus
to convert and handle audio in float point
samples

• In a loop, mix the same portion from all tracks to
the mix buffer (also a FloatSampleBuffer)

• Then write the mix buffer to the audio device

• -> perfect synchronization
M
I
D
D
L
E

| JavaOne 2003 | BOF #174411

Synchronization: Play Position 1

• Problem: at playback, how can we get the exact
playback position?

• DataLine has methods to query position

• But returned position is very inaccurate

• Solution: employ a mixture of guessing and
interpolation...

M
I
D
D
L
E

| JavaOne 2003 | BOF #174412

Synchronization: Play Position 2

• known: the number of samples written to the
device

• At each SourceDataLine.write(), measure the
current time: posCurrTime

• Playback position =
 written samples in millis
+ ((current time) - posCurrTime)
- lineBufferSizeInMillis
- hardcodedDelay

M
I
D
D
L
E

| JavaOne 2003 | BOF #174413

Synchronization: Play Position 3

• Problem: how to get the current time in millis?

• Bad idea: System.currentTimeMillis()
- on Windows only 50-60millis resolution

• New! With Java 1.4.2, use sun.misc.Perf
- high resolution timer

• But beware: security protected, not a public API

M
I
D
D
L
E

| JavaOne 2003 | BOF #174414

Synchronization: Play Position 4

• Solution: wrapper method that uses either the new one
or the old one:

 private static boolean use142 = true;
private static sun.misc.Perf perf = null;
private static long freq;

public static long getCurrentTime() {
 if (use142) {
 try {
 if (perf == null) {
 perf = sun.misc.Perf.getPerf();
 freq = perf.highResFrequency();
 }
 return perf.highResCounter() * 1000 / freq;
 } catch (Exception e) {}
 }
 use142 = false;
 return System.currentTimeMillis();
 }M

I
D
D
L
E

| JavaOne 2003 | BOF #174415

Synchronization: Record<->Play

• Problem: when recording a new track, how to
synchronize the recorded data?

• Solution: start the TargetDataLine before actual
recording is supposed to start.

• Then discard all samples until actual recording
is supposed to start

• Remaining problem: when exactly stop
discarding samples?

M
I
D
D
L
E

| JavaOne 2003 | BOF #174416

ogg/vorbis decoder 1

• Silence is encoded very efficiently. Small
amount of ogg data may expand to huge
amount of PCM data.

• Decoding an ogg page at once can flood the
internal circular buffer and cause a deadlock.

M
I
D
D
L
E

| JavaOne 2003 | BOF #174417

ogg/vorbis decoder 2

• Solution:

• preliminary:
Increase size of circular buffer by factor of 10.

• Better solution (to be implemented):
Handle data in ogg packets (ogg packets are
smaller than ogg pages), fill buffer only up to a
certain degree.

M
I
D
D
L
E

| JavaOne 2003 | BOF #174418

ogg/vorbis encoder 1

• Problem: vorbis paradigm of requesting buffer
from native library/acknowledging used amount
doesn't fit well into Java's handling of arrays

• vorbis returns pointer to native 2-dimensional
float array:

 float** buffer
 = vorbis_analysis_buffer(&dsp_state, 1024);
// write to buffer[channel][sample 0..979]
vorbis_analysis_wrote(&dsp_state, 980);

M
I
D
D
L
E

| JavaOne 2003 | BOF #174419

ogg/vorbis encoder 2

• Solution: Always copy data, Java layer creates
2-dimensional buffer and passes it to the native
layer

• Java code:
 float[][] buffer = new float[channels][1024];
 // write to buffer[channel][sample 0..979]
 dspState.write(buffer, 980);

M
I
D
D
L
E

| JavaOne 2003 | BOF #174420

Where's Project JXTA?

• Problem: Matthias became sick

• Stayed the last week in hospital

• Solution: next Java One ?

• Or:

Project JXTA Town Hall Meeting on Wednesday

June 11, 6:00pm - 8:00pm PST

Renaissance Parc 55 Hotel in San Francisco, CA
The evening will start out with Rob Gingell, Sun Fellow and Vice President, addressing Java

communities which include Project JXTA, Jini, the Java Community Process program. Then
we'll go into our own meeting room and talk about Project JXTA. Food and drinks will be
provided.

M
I
D
D
L
E

Q&A

